Algebra Review Packet

Video Notes: Basic Simplifications and Common Algebra Errors

Terms vs. Factor errors

Many properties apply only to terms or only to factors. Be clear on which is which.
(1) $\quad(a b)^{n}=a^{n} b^{n}$ but
$(a+b)^{n} \neq a^{n}+b^{n}$
powers do not "distribute over addition"
(2) $\sqrt{a b}=\sqrt{a} \sqrt{b} \quad$ but $\quad \sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$
cannot "take root term by term"
(3) $\frac{3 a^{-2} b}{c}=\frac{3 b}{a^{2} c} \quad$ but $\quad \frac{3 a^{-2}+b}{c} \neq \frac{3+b}{a^{2} c}$
factors "jump fraction bar" to change sign of exponent terms do not
(4) $\frac{2 x y}{5 x}=\frac{2 x y}{5 x}=\frac{2 y}{5} \quad$ but $\frac{2 x+y}{5 x} \neq \frac{2 x+y}{5 x}$
factors divide out terms do not "cancel"
(5) $3(x+y)=3 x+3 y$
"multiplication distributes over addition"
$10(0.2 x) \neq 10(0.2) \bullet 10 x$
but mult does not "distribute over mult" instead, the associative law applies

$$
10(0.2 x)=(10 \bullet 0.2) x=2 x
$$

Missing or "invisible" parenthesis
(6) $\quad(-3)^{2}=(-3)(-3)=9 \quad$ is not the same as $\quad-3^{2}$

$$
-3^{2}=-(3)^{2}=-(3 \cdot 3)=-9
$$

(7) $\quad(5 x)^{-2}=\frac{1}{(5 x)^{2}}=\frac{1}{25 x^{2}}$ is not the same as $5 x^{-2}$

$$
5 x^{-2}=5 \bullet x^{-2}=5 \bullet \frac{1}{x^{2}}=\frac{5}{x^{2}}
$$

(8) $\quad(x+2)(x+1)$
is not the same as $\quad x+2(x+1)$
(9) $3 x-(x+1)$
is not the same as $3 x-x+1$

Square roots and Absolute Values

(10) $\sqrt{16}=4$ not ± 4
(11) If $x^{2}=49$ then $x= \pm \sqrt{49}= \pm 7$ not just 7 .
(12) $\sqrt{x^{2}}=|x|$ not just x

Answer True or False. If the answer is false, what is the correct simplification

1) $\sqrt{x^{2}+16}$ simplifies to $x+4$ \qquad
2) $(\sqrt{x}+3)^{2}=x+6 \sqrt{x}+9$
3) $\frac{x^{2} y-x}{x^{2}(x+4)}$ simplifies to $\frac{x^{2} y-x}{x^{2}(x+4)}=\frac{y-x}{x+4}$
4) $\sqrt{25}= \pm 5$ \qquad
5) $(x+2)^{3}$ simplifies to $x^{3}+8$ \qquad
6) If $x^{2}=32$ then $x=4 \sqrt{2}$
7) $7 x^{-2} y$ simplifies to $\frac{7 y}{x^{2}}$
8) $\sqrt{(x-2)^{2}}$
9) $\frac{4 y^{-2}-x}{y}$ simplifes to $\frac{4-x}{y^{3}}$
10) $\sqrt{a^{2}+9 a^{4}}$ simplifies to $a+3 a^{2}$

Video Notes: Algebraic Simplifications: Factoring Rational Exponents
(1) Factor:

$$
3 x^{5}-12 x^{3}
$$

$$
\frac{1}{2} x-4
$$

$4 x^{\frac{-2}{3}}-8 x^{\frac{1}{3}}$

$$
2(2 x+5)(2) \sqrt{4-x}-\frac{1}{2}(2 x+5)^{2}(4-x)^{-\frac{1}{2}}
$$

(1) Factor: (factor out fractional coefficients also)
(a) $\frac{2}{3} x^{3}-4 x^{2}$
(c) $64 x^{\frac{2}{3}}-100 x^{\frac{5}{3}}$

Ans: $\quad \frac{2}{3} x^{2}(x-6)$
Ans: $\quad 4 x^{2 / 3}(16-25 x)$
(b) $\quad 12 x^{\frac{-3}{4}}-8 x^{\frac{1}{4}}$
(d) $-\frac{1}{2}(3 x)\left(1-x^{2}\right)^{-\frac{3}{2}}(-2 x)+3\left(1-x^{2}\right)^{-\frac{1}{2}}$

Ans: $\quad \frac{4(3-2 x)}{x^{3 / 4}}$
Ans: $\frac{3}{\left(1-x^{2}\right)^{3 / 2}}$

Video Notes: Complex Fractions Simplify

$$
\frac{2 \sqrt{1+x}-\frac{x}{\sqrt{1+x}}}{1+x} \quad \frac{x(8 x-1)\left(x^{2}+5\right)^{-\frac{1}{2}}-8\left(x^{2}+5\right)^{\frac{1}{2}}}{(8 x-1)^{2}}
$$

Worksheet: Complex Fractions

Simplify: You might try each in both of the ways shown on the video.
(a) $\frac{2 x \sqrt{x+3}-\frac{x^{2}}{\sqrt{x+3}}}{x+3}$
(b) $\frac{\frac{1}{3}\left(x^{2}+1\right) x^{-\frac{2}{3}}-2 x^{\frac{4}{3}}}{\left(x^{2}+1\right)^{2}}$

Ans: $\quad \frac{x^{2}+6 x}{(x+3)^{3 / 2}}$
Ans: $\frac{1-5 x^{2}}{3 x^{2 / 3}\left(x^{2}+1\right)^{2}}$

Video Notes: Nonlinear Inequalities / Sign Charts

$$
\text { Solve } x^{2}-x<6 \quad \frac{x-2}{(x+1)^{2}(x-4)} \geq 0
$$

$2 \sin ^{2} x-\sin x \leq 0 ; \quad 0 \leq x \leq 2 \pi$
(1) Solve $\frac{x-2}{x^{2}-16} \geq 0$
(2) Find the domain $f(x)=\sqrt{3 x^{2}-6 x}$

Ans: $\quad(-4,2] \cup(4, \infty) \quad$ Ans: $(-\infty, 0] \cup[2, \infty)$
(3) $\cos ^{2} x-\cos x \leq 0 ; \quad 0 \leq x \leq 2 \pi$

Ans: $\quad\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]$

Algebra Review Packet
Video Notes: Working with Absolute Value-Notes

Algebraic Definition of Absolute Value: $\left\{\begin{array}{l}\text { if } \\ \text { if }\end{array}\right.$

Note also: $\sqrt{x^{2}}=$ \qquad

Often in Calculus, we will need to "remove the bars", that is write absolute value expressions as piecewise defined functions.

EX: Graph $f(x)=\frac{|x|}{x}$ by first writing it as a piecewise defined function without absolute value bars.

EX: Rewrite the function $f(x)=|1-4 x|$ as a piecewise function with no bars.

EX: Rewrite the function $f(x)=\left|x^{2}-x-12\right|$ as a piecewise function with no bars.
(1) $\operatorname{Graph} \mathrm{f}(\mathrm{x})=x-|x|$ by first writing it as a piecewise defined function without absolute value bars.

(2) Rewrite the function $f(x)=|2 x+3|$ as a piecewise function with no bars.
(3) Rewrite the function $f(x)=\left|x^{2}-3 x-10\right|$ as a piecewise function with no bars.

Algebra Review Packet

2 Definitio The slope of a nonvertical line that passes through the points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The slope of a vertical line is not defined.

3 Point-Slope Form of the Equation of a Line An equation of the line pass-

4 Slope-Intercept Form of the Equation of a Line An equation of the line with slope m and y-intercept b is
$y=m x+b$

Example: Find an equation of the line containing the points $(4,2)$ and $(-3,6)$

6 Parallel and Perpendicular Lines

1. Two nonvertical lines are parallel if and only if they have the same slope.
2. Two lines with slopes m_{1} and m_{2} are perpendicular if and only if $m_{1} m_{2}=-1$; that is, their slopes are negative reciprocals:

$$
m_{2}=-\frac{1}{m_{1}}
$$

Example: Find an equation of the line containing $(4,-2)$ and perpendicular to $3 x-5 y=6$

Match the line color to the slope: (the x and y axes are black)
a) $m=1 / 3$ \qquad
b) $m=0$ \qquad
c) $m=3$ \qquad
\qquad
d) $m=-1 / 2$
\qquad

Find the equation of the line containing $(3,1)$ and $(-1 / 3,7)$

Find the equation of the line containing the x intercept of $2 x-7 y=3$ and perpendicular to $4 x+2 y=5$

Quickly graph the line $3 x-8 y=2$.

Video Notes: Functional Notation and Basic Graphs
Using functional notation when reading a graph

Using functional notation:
If $y=x^{2}$, find y when x is $3,-1$, and 5

If $f(x)=x^{2}$, find $f(3), \quad f(-1), \quad f(5)$.

Abstract use of functional notation: If $f(x)=x^{2}$, find
$f(a), \quad f\left(x^{3}\right), \quad f(2 x+3), \quad f(x+h)$ and $\frac{f(x+h)-f(x)}{h}$

Algebra Review Packet
Basic Parent Function Graphs you should know:

Graphing Transformations.

Transformation Rules for Functions		
Function Notation	Tyra Transtormation Rules	Change to Coordinate Point
$f(\mathrm{x})+\mathrm{d}$	Vertical translation up d units	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}+\mathrm{d})$
$f(x)-d$	Vertical translation down d units	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}-\mathrm{d})$
$f(\mathrm{x}+\mathrm{c})$	Horizontal translation left c units	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-\mathrm{c}, \mathrm{y})$
$f(x-c)$	Horizontal translation right c units	$(x, y) \rightarrow(x+c, y)$
-f(x)	Reflection over x -axis	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x},-\mathrm{y})$
$\mathrm{f}(-\mathrm{x})$	Reflection over y-axis	$(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x}, \mathrm{y})$
af(x)	Vertical stretch for $\|a\|>1$	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{ay})$
	Vertical compression for $0<\|a\|<1$	
$f(b x)$	Horizontal compression for $\|\mathrm{b}\|>1$	$(x, y) \rightarrow\left(\frac{x}{b}, y\right)$
	Horizontal stretch for $0<\mid$ b\| <1	

Example: Graph $f(x)=-2 \sqrt{x-4}+1$

(1) This problem tests your knowledge of reading functional values from graphs. Do not assume any numerical scale. Answers should all be in terms of letters.

What is $f(a)$? \qquad
Find a value of x such that $\mathrm{g}(\mathrm{x})=\mathrm{n}$. \qquad
Using functional notation (not numbers) find the height of each of the blue, green and orange line segments

What is the length of the purple segment?
(2) Given $g(x)=\frac{1}{x^{3}}$, find $g(a), \quad g\left(\frac{2}{x}\right), \quad g(3 x+1), \frac{g(x+h)-g(x)}{h}$
(3) Quickly sketch the graph of (you should not need a big table of points)
(a) $f(x)=\frac{1}{2}|x+3|-4$
(b) $g(x)=4-2 \cos x$

Polynomial:

- Smooth, rolling graphs.
- For polynomial of degree n there are at most $\mathrm{n} x$ intercepts and at most $\mathrm{n}-1$ turns.
- Find and graph y intercept.
- Find and graph x-intercepts if possible.
- Determine end Behavior:

Example: Graph $f(x)=\frac{1}{3}(x-3)^{2}(2 x+1)$

Algebra Review Packet

Graphing a Rational Function:

- Factor numerator and denominator and reduce fraction if possible.
- Find y intercepts,
- Find x intercepts if possible,
- Find Vertical Asymptotes if any and consider approach up or down.
- Find Horizontal Asymptotes if any
Horizontal Asymptotes
To find the horizontal asymptote, we compare the degree
of the numerator with the degree of the denominator.

$$
f(x)=\frac{a x^{n}+\ldots}{b x^{m}+\ldots}
$$

If $n<m$ then horizontal asymptote is the x-axis $(y=0)$.
If $n=m$ then the horizontal asymptote is $y=\frac{a}{b}$.
If $n>m$ then there is no horizontal asymptote. (There is an oblique asymptote.)

Example: Graph $f(x)=\frac{2 x^{2}-4 x}{(x-1)(x+2)}$

Sketch the graph of $f(x)=-\frac{x}{2}(x+2)^{2}(x-1)$

Sketch the graph of $f(x)=\frac{2 x}{x^{2}-4}$

