Video Notes: Basic Simplifications and Common Algebra Errors					
Terms vs. Factor errors					
			n an De alexa an histoir bisto		
iviany	properties apply only t	o terms or only to fact	tors. Be clear on which is which.		
(1)	$(ab)^n = a^n b^n$	but	$(a+b)^n \neq a^n + b^n$		
			powers do not "distribute over addition"		
(2)	$\sqrt{ab} = \sqrt{a\sqrt{b}}$	but	$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$		
			cannot "take root term by term"		
(3)	$\frac{3a^{-2}b}{3a} = \frac{3b}{3a}$	but	$\frac{3a^{-2}+b}{\neq} \neq \frac{3+b}{\leq}$		
(-)	$c a^2 c$		$c \qquad a^2 c$		
factor	rs "jump fraction bar" t	o change sign of expo	nent terms do not		
(4)	$\frac{2xy}{2xy} = \frac{2xy}{2xy} = \frac{2y}{2xy}$	but	$\frac{2x+y}{\neq} \frac{2x+y}{\neq}$		
(')	5x 5x 5	Sat	5x - 5x		
factor	s divide out		terms do not "cancel"		
(5)	3(x+y)=3x+3y	10(0.2	$2x) \neq 10(0.2) \bullet 10x$		
"multi	plication distributes ov	er addition"	but mult does not "distribute over mult"		
		instea	d, the associative law applies		
			$10(0.2x) = (10 \bullet 0.2)x = 2x$		
Missing or "invisible" parenthesis					
(6)	$(-3)^2 = (-3)(-3) = 9$	is not the same as	-3^{2}		
			$-3^2 = -(3)^2 = -(3 \bullet 3) = -9$		
(7)	$(5x)^{-2} = \frac{1}{(5x)^2} = \frac{1}{25x^2}$	- is not the same as	$5x^{-2}$		
	(5x) 25x				
			$5x^{-2} = 5 \bullet x^{-2} = 5 \bullet \frac{1}{x^2} = \frac{5}{x^2}$		
(8)	(x+2)(x+1)	is not the same as	x+2(x+1)		
(9)	3x-(x+1)	is not the same as	3x-x+1		
Square roots and Absolute Values					
(10) $\sqrt{16} = 4$ not ± 4					
(11) If $x^2 = 49$ then x = $\pm \sqrt{49} = \pm 7$ not just 7.					

(12) $\sqrt{x^2} = |x|$ not just x

Worksheet: Basic Simplifications and Common Algebra Errors

Answer True or False. If the answer is false, what is the correct simplification

1)
$$\sqrt{x^2 + 16}$$
 simplifies to $x + 4$ ______
2) $(\sqrt{x} + 3)^2 = x + 6\sqrt{x} + 9$ ______
3) $\frac{x^2y - x}{x^2(x+4)}$ simplifies to $\frac{x^2y - x}{x^2(x+4)} = \frac{y - x}{x+4}$ ______
4) $\sqrt{25} = \pm 5$ ______
5) $(x+2)^3$ simplifies to $x^3 + 8$ ______
6) If $x^2 = 32$ then $x = 4\sqrt{2}$ ______
7) $7x^{-2}y$ simplifies to $\frac{7y}{x^2}$ ______
8) $\sqrt{(x-2)^2}$ ______
9) $\frac{4y^{-2} - x}{y}$ simplifies to $\frac{4 - x}{y^3}$ ______

Video Notes: Algebraic Simplifications: Factoring Rational Exponents

(1) Factor:

$$3x^5 - 12x^3$$
 $\frac{1}{2}x - 4$

$$4x^{\frac{-2}{3}} - 8x^{\frac{1}{3}} \qquad 2(2x+5)(2)\sqrt{4-x} - \frac{1}{2}(2x+5)^2(4-x)^{-\frac{1}{2}}$$

Worksheet: Algebraic Simplifications: Factoring Rational Exponents

(1) Factor: (factor out fractional coefficients also)

(a)
$$\frac{2}{3}x^3 - 4x^2$$
 (c) $64x^{\frac{2}{3}} - 100x^{\frac{5}{3}}$

$$\frac{Ans: \quad \frac{2}{3}x^{2}(x-6) \qquad Ans: \quad 4x^{2/3}(16-25x)$$
(b)
$$12x^{\frac{-3}{4}} - 8x^{\frac{1}{4}} \qquad (d) -\frac{1}{2}(3x)(1-x^{2})^{-\frac{3}{2}}(-2x) + 3(1-x^{2})^{-\frac{1}{2}}$$

Ans:
$$\frac{4(3-2x)}{x^{3/4}}$$
 Ans: $\frac{3}{(1-x^2)^{3/2}}$

Video Notes: Complex Fractions

Simplify

$$\frac{2\sqrt{1+x} - \frac{x}{\sqrt{1+x}}}{1+x}$$

$$\frac{x(8x-1)\left(x^2+5\right)^{-\frac{1}{2}}-8\left(x^2+5\right)^{\frac{1}{2}}}{(8x-1)^2}$$

Worksheet: Complex Fractions

Simplify: You might try each in both of the ways shown on the video.

2

(a)
$$\frac{2x\sqrt{x+3} - \frac{x^2}{\sqrt{x+3}}}{x+3}$$
 (b) $\frac{\frac{1}{3}(x^2+1)x^{-\frac{2}{3}} - 2x^{\frac{4}{3}}}{(x^2+1)^2}$

Ans:	$x^{2} + 6x$	Ans:	$1 - 5x^2$
	$(x+3)^{3/2}$	Alls.	$\overline{3x^{2/3}(x^2+1)^2}$

Solve $x^2 - x < 6$

$$\frac{x-2}{(x+1)^2(x-4)} \ge 0$$

 $2\sin^2 x - \sin x \le 0; \qquad 0 \le x \le 2\pi$

Worksheet: Nonlinear Inequalities / Sign Charts

(1) Solve
$$\frac{x-2}{x^2-16} \ge 0$$
 (2) Find the domain $f(x) = \sqrt{3x^2-6x}$

 Ans:
 $(-4,2] \cup (4,\infty)$ Ans:
 $(-\infty,0] \cup [2,\infty)$

(3) $\cos^2 x - \cos x \le 0; \quad 0 \le x \le 2\pi$

Ans: $[0,\frac{\pi}{2}] \cup [\frac{3\pi}{2},2\pi]$

Algebra Review Packet

Video Notes: Working with Absolute Value-Notes

	[if
Algebraic Definition of Absolute Value:	[if

Note also: $\sqrt{x^2} =$

Often in Calculus, we will need to "remove the bars", that is write absolute value expressions as piecewise defined functions.

EX: Rewrite the function f(x) = |1 - 4x| as a piecewise function with no bars.

EX: Rewrite the function $f(x) = |x^2 - x - 12|$ as a piecewise function with no bars.

Worksheet: Working with Absolute Value

(1)Graph f(x)= x - |x| by first writing it as a piecewise defined function without absolute value bars.

(2) Rewrite the function f(x) = |2x+3| as a piecewise function with no bars.

(3) Rewrite the function $f(x) = |x^2 - 3x - 10|$ as a piecewise function with no bars.

Algebra Review Packet

Video Notes: Lines

Example: Find an equation of the line containing the points (4,2) and (-3,6)

Worksheet: Lines

Match the line color to the slope: (the x and y axes are black)

- a) m= 1/3 _____ b) m= 0 _____
- c) m= 3 _____
- d) m= -1/2 _____
- e) m= -6 _____

Find the equation of the line containing (3,1) and (-1/3, 7)

Find the equation of the line containing the x intercept of 2x-7y=3 and perpendicular to 4x+2y=5

Quickly graph the line 3x-8y=2. 4 -3-2 -1-0 ż 3 -5 -4 -3 -ż -1 ż -1--2

Video Notes: Functional Notation and Basic Graphs

Using functional notation:

If $y=x^2$, find y when x is 3, -1, and 5

If
$$f(x) = x^2$$
, find $f(3)$, $f(-1)$, $f(5)$.

Abstract use of functional notation: If $f(x) = x^2$, find f(a), $f(x^3)$, f(2x+3), f(x+h) and $\frac{f(x+h) - f(x)}{h}$

Using functional notation when reading a graph

Algebra Review Packet Basic Parent Function Graphs you should know:

Graphing Transformations.

Transformation Rules for Functions						
Function Notation	Type of Transformation Transformation Rules Functions	Change to Coordinate Point				
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y + d)$				
f(x) – <mark>d</mark>	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$				
f(x + c)	Horizontal translation left c units	$(x, y) \rightarrow (x - c, y)$				
f(x – c)	Horizontal translation right c units	$(x, y) \rightarrow (x + c, y)$				
-f(x)	Reflection over x-axis	$(x, y) \rightarrow (x, -y)$				
f(-x)	Reflection over y-axis	$(x, y) \rightarrow (-x, y)$				
- (()	Vertical stretch for a > 1	(x, y) → (x, ay)				
ar(x)	Vertical compression for 0 < a < 1					
f(ba)	Horizontal compression for b > 1	$(x, y) \to \left(\frac{x}{b}, y\right)$				
(XC)	Horizontal stretch for 0 < b < 1					

Example: Graph $f(x) = -2\sqrt{x-4} + 1$

Worksheet: Functional Notation

(1) This problem tests your knowledge of reading functional values from graphs. Do not assume any numerical scale. Answers should all be in terms of letters.

(2) Given
$$g(x) = \frac{1}{x^3}$$
, find $g(a)$, $g\left(\frac{2}{x}\right)$, $g(3x+1)$, $\frac{g(x+h) - g(x)}{h}$

Video Notes: Graphing Polynomials and Rational Functions – the Basics

Polynomial:

- Smooth, rolling graphs.
- For polynomial of degree n there are at most n x intercepts and at most n-1 turns.
- Find and graph y intercept.
- Find and graph x-intercepts if possible.
- Determine end Behavior: Example: Graph $f(x) = \frac{1}{3}(x-3)^2(2x+1)$

Algebra Review Packet

Graphing a Rational Function:

- Factor numerator and denominator and reduce fraction if possible.
- Find y intercepts,
- Find x intercepts if possible,
- Find Vertical Asymptotes if any and consider approach up or down.
- Find Horizontal Asymptotes if any

Example: Graph
$$f(x) = \frac{2x^2 - 4x}{(x-1)(x+2)}$$

0

Worksheet: Graphing Polynomials and Rational Functions – the Basics

Sketch the graph of
$$f(x) = -\frac{x}{2}(x+2)^2(x-1)$$

